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Abstract

We introduce a simple algorithm to improve existing density surfaces to ensure that
the resulting surfaces are as close to neutral as possible. This means the slopes at
any point on the surfaces are close to neutral tangent planes – the directions along
which layered stirring and mixing occurs – minimizing the fictitious diapycnal diffusiv-5

ity. Inverse techniques and layered models have been used for decades to understand
ocean circulation. The most-used density surfaces are potential density or neutral den-
sity surfaces. Both these density surfaces and all others produce a fictitious diapycnal
diffusivity to some degree due to the helical nature of neutral trajectories – with the
magnitude of this artificial diffusivity in some cases being larger than the values mea-10

sured in the ocean. Here we show how this error can be reduced by up to four orders
of magnitude and therefore becomes insignificant compared to measured values, thus
providing surfaces which would produce more accurate results when used for inverse
techniques.

1 Introduction15

Transport in the ocean does not occur along surfaces of constant in-situ density and
several approaches have been used to find a density variable whose isosurfaces ac-
curately describe the direction along which flow in the ocean occurs. Using inappro-
priate density surfaces leads to a fictitious diapycnal diffusivity, Df , sometimes orders
of magnitude larger than the measured diapycnal diffusivity in the ocean. Df is an er-20

ror resulting from mixing along a well-defined surface instead of along neutral tangent
planes. This fictitious diapycnal diffusivity does not represent a real physical process.

Scalar properties in the ocean get stirred (and subsequently mixed) efficiently by
mesoscale eddies and two-dimensional turbulence along neutral tangent planes (Mc-
Dougall, 1987). These are defined such that when water parcels are moved small25

distances along these planes, they experience no buoyant restoring forces. It is impos-
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sible to link these neutral tangent planes to form a surface, therefore “neutral surfaces”
will always be mathematically ill-defined (McDougall, 1987; McDougall and Jackett,
1988). If we were to follow a neutral trajectory around an ocean basin (linking up neu-
tral tangent planes) and arrive back at the initial latitude/longitude one normally arrives
at a different depth than where one started. This shows that the definition of a neutral5

surface is path-dependent, an effect caused by the nonlinearity of the equation of state
of seawater (because the ratio α/β is a function of pressure; see Appendix A for a
more detailed explanation). Therefore it is not possible to find a “perfect” surface to de-
scribe flow in the ocean. There will always be errors associated with density surfaces
due to path-dependency – but how large is this unavoidable error?10

Previous efforts to construct density variables minimizing Df include approximately
neutral surfaces (Jackett and McDougall, 1997; Jackett et al., 20081) and orthobaric
density surfaces (de Szoeke et al., 2000). These algorithms label a three-dimensional
hydrography with a density variable. We can then find surfaces in this hydrography on
which the density variable is constant and use this surface for inverse techniques or15

for plotting variables such as temperature, salinity and nutrients to understand the evo-
lution of water masses. Compared to these density-labelling algorithms the technique
described in this work takes one density surface – which can be a surface of constant
potential density, neutral density or any other density variable – and improves it to
ensure it is as close to the neutral tangent planes as possible thus minimizing the fic-20

titious diapycnal diffusivity. This algorithm is ideal for creating optimized approximately
neutral surfaces to use as water mass density boundaries in inverse models. The
improvement due to these optimized approximately neutral surfaces might not be sig-
nificant in large box inverse models of non-synoptic hydrographic sections compared to
the other assumptions made (i.e. steady state, etc.) but we expect that these surfaces25

will significantly decrease the error of inverse models using either synoptic sections or
atlas data for process studies that particularly target the determination of mixing.

1Jackett, D. R., McDougall, T. J., and LeSommer, J.: A new and improved neutral density
variable for the world’s oceans, in preparation, 2008.
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2 Basic properties of density surfaces

Many different density surfaces have been used in the past for inverse techniques, lay-
ered ocean models or other applications describing ocean circulation along isopycnals.
These different density surfaces all differ in the extent to which they achieve the three
desirable but mutually inconsistent properties (McDougall and Jackett, 2005b):5

– being as neutral as possible,

– being as quasi-material as possible,

– possessing a geostrophic streamfunction (commonly called a Montgomery poten-
tial),

where quasi-material means that flow through a surface only arises due to mixing pro-10

cesses.
In this work we will mainly focus on the first point, comparing how “neutral” different

density variables are. “Neutral” here describes the direction along which a parcel can
travel without experiencing buoyant restoring forces. The γn-variable (Jackett and Mc-
Dougall, 1997) and the γi -variable (Jackett et al., 20081) for example were constructed15

to produce a surface which is as neutral as possible by minimizing the slope difference
between these respective surfaces and the neutral tangent planes, but ignoring the last
two points mentioned above. Eden and Willebrand (1999) took a different approach and
tried to construct a density variable which is a compromise between neutrality and two
other properties, (a) the horizontal gradient of the neutral density should agree with the20

gradient of in-situ density and (b) the vertical gradient of the neutral density should be
proportional to the static stablility of the water column. These requirements are quite
different to the properties used by McDougall and Jackett (2005b).
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We note that the integrating factor b (McDougall and Jackett, 1988) defined by

γz=ρb(βSz−αΘz), (1)

varies in the ocean whereas the extra requirements of Eden and Willebrand (1999)
would only be strictly true if the integrating factor b were equal to one everywhere in
the ocean. ρ in this equation is in-situ density, β is the saline contraction coefficient,5

α the thermal expansion coefficient and Sz and Θz are the vertical gradients of salinity
and conservative temperature.

McDougall (1988) shows that b is given by

b≈exp[−g2ρTb

∫
a
N−2(∇aΘ−Θp∇ap)·d l], (2)

where N2 is the buoyancy frequency and ∇a is the gradient along an approximately10

neutral surface. Tb is the thermobaric parameter given by

Tb=β(
α
β

)p. (3)

This equation was actually derived for spatial gradients along a neutral tangent plane
and here it is written in terms of gradients in an approximately neutral surface. It was
also derived ignoring the dependence of the saline contraction coefficient on pressure15

(in comparison to αp). For both these reasons we use an approximately equal sign in
Eq. (2). Choosing the appropriate density variable will always depend on ones appli-
cation – a surface which satisfies all three properties does not exist due to the nature
of the equation of state. It is therefore very important to know the advantages of each
density variable and the errors associated with them. One density variable might do a20

good job for one application but introduce substantial errors for another.
To quantify the quality (in the sense of being close to neutral) of a density surface we

use the fictitious diapycnal diffusivity caused by mixing laterally along a density surface
with a slope different to that of the neutral tangent plane. Df is given by

Df=K · s2, (4)25
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where K is a lateral diffusivity (taken to be 1000 m2 s−1 in the following calculations)
and s is the slope difference between the density surface used and the neutral tangent
plane (see Eqn. 7). The fictitious diapycnal diffusivity described here is the same as
Dfictitious in McDougall and Jackett (2005b). A derivation of Df can be found in Ap-
pendix B.5

It has been shown that the mean diapycnal diffusivity in the ocean is roughly
10−5 m2 s−1, even though it can be larger in shallow regions or over sea mounts (Polzin
et al., 1997). If Df for a specific density surface is comparable or larger than 10−5 m2 s−1

over a significant area, then using this surface to describe the flow in the ocean would
introduce significant mixing that is purely due to the error of the definition of the density10

surface used. Such a situation could be a significant issure for an isopycnal model
which uses σ2 surfaces as the interfaces between different layers, making these mod-
els less neutral than z-coordinate models which mix their tracers along neutral tangent
planes.

When describing ocean flow the terms “isopycnal” and “diapycnal” are used to de-15

scribe flow along and through “density” surfaces, respectively. But since it is impos-
sible to construct a mathematically well-defined neutral surface due to the effects of
the nonlinear equation of state, it is only possible to define an approximately neu-
tral surface. Therefore to properly define diapycnal transport we have to distinguish
between a mathematically well-defined approximately neutral surface and the actual20

isopycnal/diapycnal transport. In the latter “isopycnal” means along a neutral helix (the
trajectory we would get if we connect neutral tangent planes following fluid flow) and
“diapycnal” means across this neutral helix.

The vertical velocity ea through an approximately neutral surface, γa, can be written
as25

ea=e+ehel, (5)

where e is the diapycnal transport due to cabbeling, thermobaricity, double diffusion
and small-scale turbulent mixing, and ehel is the vertical velocity through the approxi-
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mately neutral surface due to the helical shape of neutral trajectories. This diapycnal
transport, ehel, exists without requiring the dissipation of kinetic energy. It can be writ-
ten as

ehel=V · s, (6)

where V is the horizontal velocity (u, v) and s is the slope difference between a neutral5

tangent plane and the approximately neutral surface,

s=∇nz−∇az, (7)

where ∇n is the gradient along a neutral tangent plane and ∇a is the gradient along
any approximate surface (whether it be a potential density surface, an approximately
neutral surface or any other surface).10

The diapycnal transport ea can also be written in terms of the material derivative of
γa as

ea=
Dγa

Dt

γa
z

, (8)

as is illustrated in Fig. 1, where γa is the variable which is constant in the approximately
neutral surface.15

The property of the ocean’s hydrography which stops us from forming mathematically
well-defined neutral surfaces, neutral helicity, can be written as (McDougall and Jackett,
2007)

H=βTb∇p · ∇S×∇Θ=
N2

g
Tb∇np×∇nΘ · k. (9)

The first part of Eq. (9) means that for neutral helicity to be zero the line of intersection20

of the S and Θ planes, ∇S×∇Θ, must lie in the isobaric surface, the second part
requires the epieutral gradients of pressure and temperature to be parallel. Both of
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these requirements are close to being met in the real ocean, but the amount by which
neutral helicity is non zero may be important for some effects.

To improve existing surfaces we construct an algorithm with the aim of reducing the
residual fictitious diapycnal diffusivity so that it is only due to neutral helicity and not
due to any other effects.5

We take one of the existing density surfaces as the initial condition and use a least-
squares approach to minimize the area integral of ε2, where ε is similar to the slope
error s but is also dependent on vertical stratification

ε=β∇aS−α∇aΘ=
N2

g
(∇nz−∇az)=

N2

g
s, (10)

with N2 being the buoyancy frequency and g the gravitational acceleration. In the10

neutral tangent plane ε=0.
An important relationship in the neutral framework is that between neutral helicity in

an approximately neutral surface and the two-dimensional curl of ε, ∇a×ε. According
to theory; Eqs. (38) and (39) in McDougall and Jackett (1988); they should be the same
as can be seen from the following equation15

−δzN2g−1 =
δρl

ρl
=b−1δγ

γ
≈−

∮
A
ε·dl=

−
∫ ∫

A
∇a × ε · kdxdy

≈
∫ ∫

A
Tb∇ap×∇aΘ · kdxdy

≈ Tb

∮
pdΘ≈

∫ ∫
A
gN−2Hdxdy (11)

The step from −δzN2g−1 to −
∮
A ε·dl has been derived in McDougall and Jackett20

(1988), and
∫ ∫

A ∇a×ε · kdxdy follows from
∮
A ε·dl using Stokes‘ theorem (see Ap-

pendix C for a proof of Stokes‘ theorem for the two-dimensional curl). −∇a×ε · k is not
426
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exactly equal to Tb∇ap×∇aΘ ·k because the small term
βp

β ∇ap×ε has been ignored (
βp

β

is only about 10% of
αp
α and |ε| is much less than |α∇aΘ|, see Appendix D). To the ex-

tent that ∇ap and ∇aΘ are good approximations of ∇np and ∇nΘ, Eq.(9) demonstrates
the approximate equivalence of Tb∇ap×∇aΘk and gN−2H in Eq. (11).

By considering a variety of areas, A, the equality of the various area integrals implies5

that the integrands −∇a×ε · k, Tb∇ap×∇aΘ · k and gN−2H are approximately equal.
Since neutral helicity is a property of the ocean‘s hydrography and we also know that
−∇a×ε · k is effectively equal to neutral helicity, we therefore know that −∇a×ε · k is
also set by the ocean‘s hydrography.

To check this relationship between gN−2H and −∇a×ε · k we choose an approxi-10

mately neutral surface in the North Atlantic which is close to the depth of the Mediter-
ranean outflow (γn=27.25 kg m−3). We choose this depth because one would think
that this warm and salty water would cause the ocean to have increased values of neu-
tral helicity in this region due to high temperature gradients perhaps crossing pressure
gradients (see Eq. 11), making it an interesting region for our calculations of the mean15

vertical advection caused by these larger values of neutral helicity.
The data we use here and in all the following examples are model data from a stan-

dard MOM4 run with a resolution of 1◦×2◦. The only change to the standard run is the
use of conservative temperature, Θ, instead of potential temperature. This change is
not relevant to the results.20

As expected from Eq. (11) one can see that both neutral helicity,
H≈g−1N2Tb∇ap×∇aΘ·k, and −∇a×ε·k in Fig. 2a and b look very similar (both
are plotted on the γn-surface). This gives us confidence in the correctness of our
equations and shows that the approximations we made were appropriate. The slight
differences which we do see might be due to the γn-surface still being a fair distance25

away from a “best-fit” surface. These plots are made using model data and as
explained later this could lead to γn being not ideal as a density variable in this data
set.

427

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-print.pdf
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
5, 419–470, 2008

Optimized
approximately neutral

surfaces

A. Klocker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

3 Improvement of approximate density surfaces

Our aim is to minimise the difference between the neutral tangent planes and the ap-
proximately neutral surfaces, that is, essentially to minimise the area integral of the
density gradient error ε. Since the curl of ε, ∇a×ε, is given by the hydrography, we
choose to minimise ε by adding a pertubation density field, Φ′ (where Φ=lnρl , ρl

5

being the locally referenced potential density), so that ε is minimised while ∇a×ε is
unaffected by the presence of Φ′. In this way a new density surface can be formed
by taking into account the pertubation density Φ′(x, y). The lateral gradient of the lo-
cally referenced potential density in the original approximately neutral surface after the
pertubation density field is imposed is given by10

ε=εinit+∇aΦ
′, (12)

where ε is the smallest possible density gradient error and ε
init is the initial density

gradient error field. A more detailed description about the theory behind this algorithm
and numerical testcases can be found in Appendix D.

Now we apply the idea of minimizing ε, without changing its curl, ∇a×ε, to construct15

an algorithm which optimizes existing density surfaces to be as neutral as possible
with the residual error only being due to neutral helicity. As an initial condition we can
use any density variable that labels a three-dimensional data set. We then choose
a surface on which this density variable is constant and linearly interpolate S and Θ
onto that surface. With these variables we can then calculate the density gradient error20

ε=β∇aS−α∇aΘ
2. From every grid point we calculate an x-component, εinit

ew , and a

2The first part of Eq. (10) (see McDougall and Jackett, 1988, for a derivation) uses gradients
in an approximate surfaces without the need of any information along the neutral tangent plane,
which makes it much more efficient to compute ε, therefore we will use this definition of ε in all
further calculations. Calculating ε via the second part of Eq. (10) would require multiple calls
of the equation of state and therefore become computationally more expensive. Note that we
have adopted the opposite sign convention for ε compared with McDougall and Jackett (1988).
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y-component, εinit
ns , of the initial density gradient error εinit, which we will then use as

initial conditions in the algorithm. From a numerical perspective this will look like

εinit
ew = β(Seast−Swest)−α(Θeast −Θwest)

εinit
ns = β(Snorth−Ssouth)−α(Θnorth−Θsouth), (13)

where the thermal expansion coefficient α and the saline contraction coefficient β are5

averaged onto the points in between the tracer grid points (the green points in Fig. 3;
the red point are the tracer points).

We now construct a matrix A with the number of rows being the number of equations
and the number of columns being the number of grid points. This matrix is a sparse
matrix; for the εinit

ew equations it will have a “1” for the eastern grid point and a “−1” for10

the western grid point – all the other entries are “0” in each row. The same is true for
the εinit

ns -equations. We also constrain the average pertubation density, Φ′, to be zero.
This would show up in the matrix A as a row filled with ones. Now we have a sparse
matrix A, a vector εinit (which has as many entries as the matrix A has rows) and we
want to find the pertubation density Φ′ for which |ε|2 is minimized. To solve this set of15

equations we can use a direct inversion,

Φ′=(AT ·A)−1(AT · εinit), (14)

which is the least-squares solution of

minimise |AΦ′−εinit|2 (15)

Alternatively we could solve Eq. (15) using an iterative technique, e.g., the LSQR algo-20

rithm of Paige and Saunders (1982), as implemented in Matlab (2007). For the larger
data sets the iterative technique is the computationally more efficient approach.

We now have a Φ′-field which we need to convert into a depth change, δz, to find
the depth of the optimized approximately neutral surface. From McDougall and Jackett
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(1988) we know that

−N2

g
δz=

δρl

ρl
=Φ′. (16)

We thus have to calculate N2 on the surface to find the depth of the new optimized
approximately neutral surface3.

Due to the algorithm working on a horizontally extensive two-dimensional surface5

the first guess of the depth change, δz, will not be the final solution. We thus linearly
interpolate S and Θ onto the new surface and calculate new lateral density gradient
errors. We then treat these new density gradient errors as we did the ε

init-field before
to get a more accurate optimized approximately neutral surface. If we repeat these
steps often enough |ε|2 will converge. Once it has converged the surface will be as10

close to neutral as possible, with the residual fictitious diapycnal diffusivity being due
only to the path-dependency caused by neutral helicity. We will call this surface the
ω-surface.

On all density surfaces we will have regions where the surface outcrops or hits the
bottom topography. Due to this we will end up with several regions on a density surface15

which do not communicate with each other. A typical example is a marginal sea with
narrow connections to the open ocean. In the algorithm described above we deal with
this problem of independent regions by writing a set of equations as in Eq. (15) for each
seperate region. Similar to before we constrain the average petubation density of each
region, Φ′, to be zero.20

When optimizing approximately neutral surfaces with the method above we some-
times get a result where |ε|2 does not converge. This is because of the algorithm
overestimating the depth change, δz, due to the algorithm not knowing about the strat-
ification above and below the surface optimized. This can then lead to a growing |ε|2
due to the algorithm trying to overcorrect at these casts. If this happens we have25

3We use (N2+3 ∗ 10−6) instead of N2 to ensure that the algorithm is stable when N2 is close
to zero.
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to dampen the depth change. This means we only use a certain percentage of the
depth change estimated by Eq. (16) to calculate the optimized surface. Another way of
minimizing the possibility of this problem is to discard the data in the mixed layer – a
region in which other processes than neutral physics are dominant. On all the following
surfaces we will discard data shallower than 200 db.5

A similar approach as above can be used to minimize for the slope error, s, instead
of the density gradient error, ε. This would be more consistent with the aim of mini-
mizing the fictitious diapycnal diffusivity but on the other hand the minimisation of the
density gradient error is easier to understand when compared to the theoretical ideas
in Appendix D. Both approaches give very similar resutls.10

McDougall and Jackett (1988) describe an algorithm that similarly modifies existing
approximate neutral surfaces by minimizing the sizes of the square of the density gra-
dient errors at each spatial location, in this case weighted by N−2. This was achieved
using a multi-dimensional Newton technique, one dimension for each data point on
the approximate surface, with one additional dimension for a Lagrangian-multiplier15

equation constraining the mean pressure perturbation to be zero. The computational
method described above is a two dimensional analogue of a new sparse matrix inver-
sion technique that labels three-dimensional oceanographic data with a new neutral
density variable γi (Jackett et al., 20081). The optimization methods described in this
paper and in McDougall and Jackett (1988) and Jackett et al. (20081) all have as their20

goal the minimization of (a weighted) sums of squares ε · ε, the differences between
the three methods being in the simplicity of the equations that are actually used. Mc-
Dougall and Jackett (1988) used the set of linear equations to minimize ε · ε while
assuming given values of the vertical gradients of salinity and potential temperature.
The solution technique proceeded iteratively until convergence with revised values of25

the vertical gradients of salinity and potential temperature being made after each it-
eration if required. By contrast, the method of the present paper finds values of a
logarithmic density perturbation, Φ′, such that the resulting ε · ε is minimized on the
original surface in space. We then use this perturbation logarithmic density to estimate
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the pressure perturbation, as described by Eq. (16) above. This new surface is then
iterated through the same process again until convergence is achieved. This descrip-
tion shows that the two methods are quite similar. We have found the present method
to have good convergence properties and the code has been extended to include sta-
tions where the surface in question is not simply connected. As will be shown later,5

the development of the optimization technique for a single surface leads to significant
improvements in the accuracies achieved by the two dimensional surfaces when com-
pared with iso-surfaces of three dimensional variables, all in terms of their abilities in
approximating neutral tangent planes.

To illustrate the improvements of the optimized approximately neutral surface, the10

ω-surface, we choose a surface with an average pressure of about 1400 db. Pressure
and conservative temperature of this surface are shown in Fig. 4a and b. The sur-
face chosen here is just an arbitrary example of a density surface covering the global
ocean and the results are very similar for surfaces that are denser or lighter than the
surface shown. Neutral helicity on the same surface is shown in Fig. 4c. The regions15

of elevated values of neutral helicity are mainly concentrated in the Southern Ocean
(especially in the regions of high eddy activity) and in the North Atlantic (close to where
the surface outcrops and close to the Mediterranean outflow). This is where we would
expect high values of neutral helicity due to strong gradients of pressure and tempera-
ture.20

Comparing Fig. 5a and b one can see the improvement achieved by using the al-
gorithm introduced in this paper compared with the γn-surface (which was used as
initial condition). Shown is the fictitious diapycnal diffusivity (Df ), plotted as log10 D

f

where the colour scale was chosen to make the comparison of both surfaces possible.
Both the North Atlantic and the Southern Ocean have regions with a fictitious diapycnal25

diffusivity larger than 10−5 m2 s−1 on the γn-surface and therefore exceed the values
measured in most regions in the ocean. These are the regions where most density vari-
ables produce large errors with the other regions of the global ocean usually being less
problematic. Most other regions have fictitious diapycnal diffusivities of approximately
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10−7 m2 s−1. This has been reduced by a few orders of magnitude in the ω-surface,
pushing all the fictitious diapycnal diffusivities significantly below the values measured
in the ocean with the remaining errors located close to the outcropping regions. On
the ω-surface there are no fictitious diapycnal diffusivities larger than 10−5 m2 s−1 with
most regions having values smaller than 10−10,m2 s−1 which is insignificant compared5

to the values measured in the ocean. The higher slope errors close to the outcropping
regions are caused by high values of ∇ap (and ∇aΘ) causing high values of neutral
helicity (compare Figs. 4c and 5b) .

The improvement of the γn-surface can also be seen by looking at the fictitious diapy-
cnal diffusivity, Df , on a frequency plot (see Fig. 6). Figure 6b shows the surface used10

in the previous figure and Fig. 6a and c shows a lighter and a denser surface. One
can see that Df decreases by a few orders of magnitude when using the ω-surface
compared to the γn-surface. The large improvement is possible because the model
data we are using had water masses that deviated significantly from observed ocean
properties. When applied to atlas data the fictitious diapycnal diffusivity in an ω-surface15

is perhaps just one to two orders of magnitude less than in a γn-surface.
We plot neutral helicity in the North Atlantic on the surface described above and

overlay ε as vectors (see Fig. 7). In this figure we can see that the ε-vectors circulate
around patches of neutral helicity – clockwise around positive patches and anticlock-
wise around negative patches. This is exactly what we found from our idealised cases,20

as seen in Appendix A5, and is expected from equating the integrands −∇a×ε · k and
gN−2H of Eq. (11), therefore giving us confidence that the algorithm is doing the right
thing.

The improvement made by the algorithm can be seen by plotting γn on an ω-surface
(Fig. 8). γn values have a range from 27.61 to 27.65 on the ω-surface which is a25

substantial density change.
Another way of seeing the improvement is by plotting Tb∇ap×∇aΘ · k≈gN−2H vs.

−∇a×ε · k for the γn and the ω-surfaces (see Fig. 9a and b for γn and ω respectively).
For the ω-surface one can see a very good agreement between gN−2H and −∇a×ε ·k,
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as all the points of the surface almost end up on the line.
Even though the change between our initial condition and the ω-surface are quite

large in terms of the fictitious diapycnal diffusivity, the correlation between gN−2H and
−∇a×ε ·k or the variations of γn on the ω-surface or the actual changes of temperature
and pressure between the initial condition and the ω-surface are reasonably small.5

4 How “neutral” are existing density variables?

To show the differences between different density variables we use the same surface
in the North Atlantic that we plotted in Fig. 2 with an average depth of about 600 db.
We concentrate on the North Atlantic instead of the global ocean because it is easier
to see differences on a smaller scale and neutral physics is interesting in the North10

Atlantic due to the Mediterranean outflow producing increased values of neutral helicity.
Showing only the North Atlantic also gives us the opportunity to use the density variable
γEW of Eden and Willebrand (1999), a density variable fitted only to the North Atlantic.

The density surfaces which we compare are the new and the old neutral density vari-
ables (γi , Jackett et al., 20081) and (γn, Jackett and McDougall, 1997), respectively a15

γ-variable approximated with a rational function of salinity and conservative tempera-
ture; γrf , McDougall and Jackett (2005b), a γ-variable approximated with a function
fitted to data of the North Atlantic; γEW , Eden and Willebrand (1999), potential density
with reference pressures of 0, 600, 1000 and 2000 db; σ0, σ600, σ1000 and σ2000, ortho-
baric density; ρν, de Szoeke et al. (2000), modified steric anomaly surfaces, variations20

thereof and the optimised approximately neutral density surface, the ω-surface, of this
paper.

4.1 Different approximations to neutral surfaces

Five different approximations to neutral surfaces have been discussed to date. All
of them except γEW are constructed to minimize s

2 or ε
2 (i.e. minimize the slope25
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difference or density gradient errors between the approximately neutral density surface
and the neutral tangent plane).

The first γ-variable, γn, is dependent on a pre-labelled dataset and therefore the
quality of a surface calculated with this technique is highly dependent on the proximity
of the dataset to be labelled to the reference dataset, which is the Levitus climatology5

Levitus (1982). Therefore if this code is used for model data simulating a different ocean
(a paleo ocean or future climate) or if the model drifts away from its initial state, the γn

variable may be less neutral than a well chosen potential density surface. This problem
has been adressed with a new method of constructing approximately neutral surfaces,
γi , which uses the old γn variable as an initial condition and an iterative inversion10

method to improve the surfaces. This new variable is computationally more expensive
but significantly improves the accuracy of the surfaces. The third γ-variable, γrf , is a
rational function approximating neutral density surfaces dependent only on S and Θ. In
contrast to γi and γn, γrf is independent of pressure, latitude and longitude. Not being
dependent on latitude and longitude means that it ignores the hemispheric changes15

in water-mass characteristics, therefore making it less neutral than the other neutral
density variables (at least when used for a global density surface). The advantage
of γrf is that it is faster and easier to compute making it better for use by the ocean
modelling community. γEW is a neutral density variable constructed for use in the
North Atlantic. Compared to the other approximate surfaces its main aim is not only to20

have the approximately neutral surface as neutral as possible but also to approximately
satisfy the points mentioned in Sect. 3, i.e. trying to make the horizontal gradient of
the neutral density agree with the gradient of the in-situ density and trying to make
the vertical gradient of the neutral density proportional to the static stablility of the
water column. Compared to the other γ variables, ω (as described in this paper) only25

improves a single surface rather than producing a continuum of surfaces in a three-
dimensional dataset.

The γi -surface (Fig. 10a) , which is the most accurate method to date of achieving
the neutral property in three-dimensional hydrography, shows the smallest values of
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Df compared to all the other density variables in this analysis (apart from individual
ω-surfaces constructed by the algorithm described in this paper). The main regions of
increased fictitious diapycnal diffusivity are the Mediterranean outflow, the outcropping
regions in the north and the Gulf stream region. We would expect increased values of
slope error on a good approximate neutral surface in regions where we have increased5

values of neutral helicity, which is proportional to ∇ap×∇aΘ. Such large values of neu-
tral helicity are likely to occur in regions of either a strong pressure gradient on the
surface, a strong temperature gradient or both. To have zero neutral helicity on a sur-
face the pressure gradient and the temperature gradient have to be exactly aligned, or
one of the two needs to be zero. The highest values of Df occur near Spain where there10

are strong pressure gradients and temperature gradients that do not align. Further off
the coast of Spain there is a strong temperature gradient but the pressure gradient is
quite small (the density surface is relatively flat) and therefore Df reduces drastically.
The other two regions of high Df are mainly due to a very strong pressure gradient,
near the outcropping of the density surface.15

Looking at the γn-surface (Fig. 10b) we can see a very similar pattern to the γi -
surface and slightly increased values of fictitious diapycnal diffusivity. These increased
values are due to the offset of the model data from the reference data set used by the
γn-code as explained by McDougall and Jackett (2005b). This is the major problem of
this density variable which has been adressed with the new γi -variable (Jackett et al.,20

20081). The main improvements of γi compared with γn are in the Southern Ocean
(not shown here) and the North Atlantic.
γrf (Fig. 10c) gives a very small fictitious diapycnal diffusivity over most of the North

Atlantic with the larger errors located at a concentrated region where the surface out-
crops. This is likely due to a change in the outcropping region from the hydrography25

which has been used to construct this variable.
γEW (Fig. 10d) is the γ-variable with the largest fictitious diapycnal diffusivity. The or-

der of magnitude of this diffusivity is comparable with that of a potential density surface
with a reference pressure which is not well chosen. The reason for this is that instead
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of trying to minimize only s
2 as with the other γ-variables, the aim of this function was

to also minimize the other two mutually inconsistent points mentioned in Sect. 3.
ω (Fig. 10e) shows the smallest fictitious diapycnal diffusivity, with the highest values

close to Spain. This two-dimensional approach decreases this diffusivity by about two
orders of magnitude, pushing Df far below the values measured in the ocean. The5

errors close to Spain are likely due to the crossland mixing scheme used in MOM4 to
distribute the Mediterranean outflow into the North Atlantic.

4.2 Potential density

Potential density is a widely used density variable. At its reference pressure a potential
density surface coincides with the neutral tangent plane but as soon as a potential den-10

sity surface departs from its reference pressure, the slope of this surface increasingly
differs from the slope of the neutral tangent plane. This can be seen by looking at the
normal to the potential density surface,

β(pr )∇S−α(pr )∇Θ, (17)

and the normal to a neutral tangent plane,15

β(p)∇S−α(p)∇Θ, (18)

realising that these two expressions are equal only at the reference pressure pr .
It can also be shown that the variations of potential density (referenced to pr ) along

a neutral tangent plane are given by (Jackett and McDougall, 1997; McDougall and
Jackett, 2005b)20

1
ρ
∇nσΘ=β(pr )[

α
β

(p)−α
β

(pr )]∇nΘ≈Tb[p−pr ]∇nΘ. (19)

The fictitious diapycnal diffusivity on potential density surfaces referenced to 0, 600,
1000 and 2000 db are shown in Fig. 11. These potential density surfaces show a large
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fictitious diapycnal diffusivity in the east where the warm water of the Mediterranean
enters and at the northern outcrop where cold surface waters are reached.

The fictitious diapycnal diffusivity in these figures is also due to the offset of the
pressure on these surfaces from the reference pressure Eq. (19). The σ600-surface is
the closest we can get to the approximate neutral surface due to the reference pres-5

sure being optimally chosen, with larger errors in the other potential density surfaces
(proportional to the distance of the reference pressure to the average pressure of that
surface).

4.3 Modified steric anomaly surfaces

A similar variable to potential density that has not been used much recently is steric10

anomaly (also called specific volume anomaly). Here we define a modified steric
anomaly variable as

δ(S,Θ, p)=
1

ρ(S,Θ, p)
− 1
ρ(Sr ,Θr , p)

, (20)

where Sr and Θr are fixed values of salinity and conservative temperature. This dif-
fers from the normal definition of steric anomaly by simply replacing 35 psu with some15

other fixed salinity and replacing an in-situ temperature of 0◦C with a different reference
temperature. It is important to note that once the reference parcel is decided on, the
second part of the equation is a function only of pressure.

It can be shown that the variation of modified steric anomaly along a neutral tangent
plane is given by20

ρ∇nδ=−[κ− ρ
ρr

κr ]∇np≈Tb[Θ−Θr ]∇np (21)

where κ is the adiabatic and isohaline compressibility of seawater and ρr and κr are
the density and compressibility at (Sr ,Θr , p) (where Sr and Θr have been optimally
chosen to minimize Eq. 21).
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The fictitious diapycnal diffusivity on the modified steric anomaly surface (Fig. 12a)
shows the largest values close to large pressure gradients on the surface, which is a
logical consquence of Eq. (21). The largest error is west of Spain close to where the
crossland mixing scheme of MOM4 distributes the Mediterranean outflow into the North
Atlantic. This region of large error can be seen in the fictitious diapycnal diffusivity of5

most surfaces but it is largest in the modified steric anomaly surface. The other region
of large Df is along the highest ∇ap – the region where the surface outcrops in the
northern North Atlantic. One big advantage of using steric anomaly surfaces is the
existence of a geostrophic streamfunction, the Montgomery potential (Montgomery,
1937).10

4.4 Different combinations of potential and steric anomaly density surfaces

After looking at potential density surfaces and modified steric anomaly surfaces another
alternative would be to use a combination of both these surfaces. If combined cleverly
this could lead to a surface which is more “neutral” than a potential density surface
or a modified steric anomaly surface. A detailed explanation of the method used to15

construct this surface can be found in Appendix D.
This surface gives us a fictitious diapycnal diffusivity as seen in Fig. 12b. From Fig. 12

one can see that these values are in between the ones from the σ600 and the δ-surface.
The errors in the σ600-surface are located in regions with a high temperature gradient
and errors in the δ-surface are located at high pressure gradients on this surface. On20

the new surface, which we will call the E-surface, the errors also concentrate along
these regions with a very small fictitious diapycnal diffusivity in most other areas.

This E-surface relies on subjective choices of Sr , Θr and pr and does not give signif-
icantly better surfaces than potential density or modified steric anomaly surfaces; The
main difference is in the different distribution of errors. Therefore this surface is not25

ideal in describing flow in the ocean or for providing interfaces in an ocean model and
is not pursued further.
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4.5 Orthobaric density

Orthobaric density (de Szoeke et al., 2000), ρν, has recently been introduced as a
density variable that is a function of pressure and in-situ density that has the property
that as long as water mass variations occur in a monotonic way with pressure along the
neutral directions, it can be made quite neutral for a single ocean basin (McDougall and5

Jackett, 2005a). If used for the global ocean it is not possible to tune this variable so
that it is a good approximation to neutrality. This is due to the inability of the variable to
accurately accommodate differences between water masses at fixed values of pressure
and in-situ density such as occur between the Northern and Southern Hemisphere
portions of the World Ocean (McDougall and Jackett, 2005a).10

The fictitious diapycnal diffusivity for ρν is shown in Fig. 12c. Df are concentrated
at regions of highest ∇ρν

p. This can be seen by looking at the change of orthobaric
density along a neutral tangent plane (McDougall and Jackett, 2005a, Eq. 14):

∇nρν=−Φ−1ρTb[Θ−Θ0(p, ρ)]∇np, (22)

where Θ0 is a reference conservative temperature as a function of pressure and in-situ15

density. ρν shows some of the largest errors in Df of all the surfaces analysed.

4.6 Further comparisons

Above we have seen two-dimensional maps of the fictitious diapycnal diffusivities on
the previously described approximate density surfaces in the North Atlantic, giving us
a view as to how good these surfaces are in representing isopycnal flow in the ocean.20

To further facilitate this intercomparison we now look at frequency distributions of Df .
These distributions for γn, σ0 and ω, plotted on a log10-scale, can be seen in Fig. 13.
Figure 14 shows the 95th-percentiles of the fictitious diapycnal diffusivities for all den-
sity surfaces previously considered. That is, the vertical axis shows the value of the
fictitious diapycnal diffusivity of density that is exceeded by 5% of the data.25
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It is clear from Fig. 13 that there is a substantial decrease of fictitious diapycnal dif-
fusivity going from σ0 to γn to ω. The surfaces on which these frequency distributions
are calculated are the same as the density surfaces shown previously, all with an av-
erage pressure of 600 db. It is known that σ0 is not the potential density surface with
an ideally chosen reference pressure; by choosing a better reference pressure the ficti-5

tious diapycnal diffusivity would decrease, but still be larger than for the other surfaces
shown. The γn-surface is dependent on a reference dataset which limits its neutrality
since the model data drifted from the reference data set.

In Fig. 14 one can see that for the North Atlantic the σ2000 and ρν-surfaces have
fictitious diapycnal diffusivities exceeding 10−5 m2 s−1 over more than 5% of their area.10

The decrease in fictitious diapycnal diffusivities from ρν-surfaces to potential density
surfaces to approximate neutral density surfaces shows the considerable improvement
that can be achieved by using more accurate density variables for inverse models or
other applications of density surfaces describing isopycnal flow.

5 Conclusions15

We have developed a new method for finding an individual approximately neutral sur-
face through a three-dimensional hydrographic data set (either observational data or
model output). The degree of non-neutrality along such an ω-surface has been min-
imized and the fictitious diapycnal diffusivity associated with these ω-surfaces is the
least that has been found to date using other surfaces.20

These surfaces are ideal to use as water mass density boundaries in inverse models.
The improved neutrality of these surfaces might not be significant for large box inverse
models of non-synoptic hydrographic sections but will definitely improve inverse models
using synoptic sections for process studies that particularly target the determination of
mixing.25

The small deviation of these ω-surfaces from exact neutrality is shown to be limited
by the neutral helicity that is inherent in the hydrographic data.

441

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-print.pdf
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
5, 419–470, 2008

Optimized
approximately neutral

surfaces

A. Klocker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The algorithm for forming these ω-surfcaes is described and the extent of the non-
neutrality of many other density surfaces is compared with these ω-surfaces. MAT-
LAB software to form these surfaces is available at http://www.marine.csiro.au/∼jackett/
NeutralDensity/.

Appendix A5

Path-dependency caused by the nonlinear equation of state

This is to show that path-dependency is caused by the ratio α
β being a function of

pressure. We start with writing the change of potential density, σ, along a neutral
tangent plane as10

∇nσ
ρ

= β̃∇nS − α̃∇nΘ

= β̃(
α
β

− α̃

β̃
)∇nΘ

= β̃[
α
β

(S,Θ, p) − α
β

(S,Θ, pr )]∇nΘ, (A1)

where α̃ and β̃ are the thermal expansion coefficient and the saline contraction co-
efficient at a reference pressure, pr , and ∇n is the gradient along a neutral tangent15

plane.
So if α

β is a function of S and Θ, but not of pressure, then (αβ−
α̃
β̃

)=0 and ∇nσ
ρ =0;

therefore the path-dependency would be zero. That is, path-dependency is due to the
ratio of α

β being a function of pressure, consistent with the definition of the thermobaric
parameter, Tb=β(αβ )p.20
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Appendix B

Fictitious diapycnal diffusivity

Veronis (1975) has shown that mixing along a horizontal direction instead of mixing
along an isopycnal produces a fictitious diapycnal flux of density. This fictitious diapyc-5

nal diffusivity is given by

Df=K · s2, (B1)

where K is a lateral diffusivity and s is the slope error between a surface of constant
pressure and the neutral tangent plane (see Fig. 15a).

The result B1 can be understood by taking the horizontal flux of density,10

horizontal flux of density=−K∇zρ
l , (B2)

which is the lateral diffusivity multiplied by the change of locally referenced potential
density on a geopotential. If we then multiply this horizontal flux of density with the
slope difference between the geopotential and the neurtal tangent plane we get

flux through ntp=−Ks · ∇zρ
l . (B3)15

If we then divide by ρl
z and use the following relation for the slope difference s,

s=−
∇zρ

l

ρl
z

, (B4)

we arrive at Eq. (B1). The above derivation is for the fictitious diapycnal diffusivity
caused by mixing along a geopotential instead of an isopycnal surface.

This approach can be used in a similar way to describe the fictitious diapycnal dif-20

fusivity which occurs when using a surface which has a different slope to the neutral
tangent plane (see Fig. 15b). In this case we have to substitute ∇zρ

l with ∇sρ
l , where
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∇s is the gradient along the density surface used. This then gives us the fictitious di-
apycnal diffusivity which arises when mixing laterally along a density surface which has
a different slope to the neutral tangent plane.

It is important to note that this fictitious diapycnal diffusivity is a density diffusivity and
does not apply to Θ or S – just to ρl . This is because for example ∇zΘ could be zero.5

The fictitious diapycnal diffusion of S and Θ can even be negative. These unequal
diffusivities of S and Θ is reminiscent of double-diffusive convection.

Appendix C

A proof of Stokes’ theorem for two-dimensional curls10

Here we prove the validity of Stokes’ theorem for two-dimensional curls, specifically∮
A
ε·dl=

∫ ∫
A
∇a×ε · kdxdy. (C1)

Here dl is a two-dimensional line element in the surface A. Stokes’ theorem for a full
three-dimensional curl tells us that for any vector ε∮

A
ε·dr=

∫ ∫
A
∇×ε · dA, (C2)15

where the line integral is in a surface A and the area element is normal to A,
dA=madxdy . So if we can show

∇×ε·ma=∇a×ε·k (C3)

the result will be proven (note that m
a=k−∇az and ε is two dimensional so that

ε·dl=ε·dr).20

From McDougall and Jackett (1988) Eqs. (4) and (5) we have

∇=∇a+m
a ∂
∂z

|x,y (C4)
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So the left-hand side of Eq. (C3) is

∇ × ε ·ma = ∇a×ε ·ma+ma ∂
∂z

|x,y×ε ·ma

= ∇a×ε · k+ma×εz ·ma

= ∇a×ε · k. (C5)

The first part of the right-hand side simplifies to ∇a×ε · k because ∇a×ε is an exactly5

vertical vector. Therefore our result C1 is proven.

Appendix D

Equation (11) in detail

Here we derive a close connection between neutral helicity and ∇a×ε.10

Using the definition of ε (see Eq. 10) we get

∇a × ε = βΘ∇aΘ × ∇aS − αs∇aS × ∇aΘ

+ βp∇ap × ∇aS − αp∇ap × ∇aΘ (D1)

The first two terms on the right-hand side add up to zero because αS=−βΘ and there-
fore ∇a×ε becomes (using Tb=αp−α

ββp)15

∇a×ε=−Tb∇ap×∇aΘ+βp∇ap×∇aS−
α
β
βp∇ap×∇aΘ. (D2)

If we now use ∇aS=
α
β∇aΘ+ 1

βε (from Eq. 10) we get

∇a×ε=−Tb∇ap×∇aΘ+
βp

β
∇ap×ε. (D3)

The second term is small and will therefore be ignored from here on. (
βp

β is only

about 10% of
αp
α and |ε| is much less than |α∇aΘ|).20
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For a good approximately neutral surface we expect ∇ap≈∇np and ∇aΘ≈∇nΘ so
that Tb∇ap×∇aΘ · k≈Tb∇np×∇nΘ · k=gN−2H (from Eq. 9) so that Eq. (D3) establishes
the desired approximate relation −∇a×ε·k≈gN

−2H .
Now we continue our derivation of Eq. (11) to result in Tb

∮
A pdΘ∫ ∫

A
Tb∇ap×∇aΘ · kdxdy ≈ Tb

∫ ∫
A
∇a×(p∇aΘ) · kdxdy5

= Tb

∮
p∇aΘ·dl

= Tb

∮
A
pdΘ (D4)

From the first to the second line we use Stokes’ theorem. The only approximation in
Eq. (D4) is the assumption that Tb is constant so it can be taken outside the integral.

Appendix E10

Theoretical thoughts about the algorithm and numerical testcases

Here we explore the theoretical ideas on the relationship between neutral helicity and
the density gradient errors ε which led to the development of the algorithm used to
optimize approximately neutral surfaces.15

We know that the path-dependent uncertainty does not occur on a single ocean
section because we can link up all the neutral tangent planes on a section without any
slope errors. Therefore we take a N-S section of the ocean and repeat it to the east and
west. This gives us an initial three-dimensional data set from which “perfect” neutral
surfaces with neutral helicity being zero everywhere can be found. Having found a20

neutral surface from this artificial data set we can perturb a single point on this surface
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in a way that the perturbed bottle talks neutrally to the original water parcel, but neutral
helicity is introduced.

An even simpler way to think of this numerical test case is to imagine a region of
the ocean where the pressure and conservative temperature gradients on a particular
approximately neutral surface are aligned so that ∇ap and ∇aΘ are parallel everywhere.5

Now we consider a circular pertubation of Θ in the presence of the backgound pressure
gradient as shown in Fig. 16a. This pertubation-Θ-field produces a dipole of neutral
helicity as shown in Fig. 16b. An isolated anomaly of Θ or S, as shown in Fig. 16, could
for example occur as a result of diapycnal mixing.

In our test problem we have constructed a localized helicity dipole from a single10

anomalous point using a N-S section repeated to the east and west as described ear-
lier. Figure 17a shows nine grid points out of this helicity-free field. Now we make bottle
a in Fig. 17 warmer and saltier. It still continues to talk neutrally to bottles d and h that
are at the same pressure as bottle a and have the same salinity and temperature as
the undisturbed bottle a. The same bottles are shown in a p−Θ diagram in Fig. 17b.15

All the data here are on the same approximately neutral surface. From McDougall and
Jackett (1988), Eq. (38), we know that the pitch of a neutral helix δz is approximately
equal to −δzN2g−1≈Tb

∫
A pdΘ (this follows from Eq. 11 above). If we go around the

two left-hand boxes of Fig. 17a in an anti-clockwise direction, as shown by the arrows
(correspondingly going around the loops in the p−Θ diagram in Fig. 17b also in an anti-20

clockwise direction), we can see that the neutral helicity in both loops is of the same
sign and magnitude due to the triangular areas in Fig. 17b being the same. This is also
true for the two right-hand boxes of Fig. 17a, just with opposite sign.

In this case all the links are exactly neutral except for the links from a to b (as well as
b to a) and from f to a (as well as a to f). On these links the neutral tangent planes do25

not coincide with the approximately neutral surface. The amount of this non-neutrality
can be quantified by looking at the p−Θ-diagram in Fig. 17b, with the area in the p−Θ-
diagram being proportional to

∮
ε·dl , since (from Eq. 11) −

∮
A ε·dl≈Tb

∮
A pdΘ.

Notice that the area of the two triangles in Fig. 17b a-c-d and a-d-e are equal, hence
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∫
A ε·dl is the same on the link f-a as along a-b. Figure 17 has illustrated how a water-

mass contrast at one point can create a localized pair of non-zero ε vectors. We now
illustrate how the technique of adding a Φ′(x, y) field can redistribute this ε error in
space to minimize |ε|2.

To do this we use the same algorithm as described in Sect. 3 but with an idealized5

field of density gradient errors, ε, as initial condition instead of an ε-field calculated
from a density surface in a three-dimensional hydrography. The test case is made up
of a 53×53 point grid. From every point we write an equation in the east-west direction
and one in the north-south direction.

For our first test case we build a block (a square region of our grid, as seen in Fig. 18a10

and b) of north-south density gradient errors of strength 12 in arbitrary dimensionless
units. These values of εinit imply that

β(Seast−Swest)−α(Θeast−Θwest) = 0

β(Snorth−Ssouth)−α(Θnorth−Θsouth) = 12

(E1)15

for the grid points within the white block and

β(Seast−Swest)−α(Θeast−Θwest) = 0

β(Snorth−Ssouth)−α(Θnorth−Θsouth) = 0

(E2)

for all others.20

If we now minimize ε
2, we come to the solution seen in Fig. 18a(left), colour being the

perturbed Φ-field, Φ′, and the vectors showing εnew, the new field of density gradient
errors with minimized ε

2. Figure 18a (right) shows ∇a×ε. We find the curl at the right
side of our block of density gradient errors has opposite sign to the curl at the left
side. According to Eq. (11) we know that ∇a×ε

new is also approximately proportional25

to neutral helicity. This then resembles the neutral helicity dipole as seen in Fig. 16b,
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with both poles of this dipole moved apart more and with density gradient errors going
around the neutral helicity poles.

To further look at the way the least-square inversion changes the density gradient
errors we construct another test case. Figure 18b shows a block of density gradient
errors in which the left half of the box has initial density gradient errors of strength 125

and the right half has the same strength but opposite sign. As in the previous example
we can see that ∇a×ε

new has high values along the right and left side of our blocks of
imposed density errors, which corresponds to neutral helicity in the real ocean. The
main change to the previous example is the border between the block of density errors
with strength 12 and the block of density errors of strength −12, which gives us a10

∇a×ε
new twice the strength of the other borders. The final density gradient vectors ε

mainly circulate inside this region between the maximum/minimum values of ∇a×ε
new.

The ε
new vectors are spread beyond the initial white box and rotate around the strips

of positive and negative helicity.

Appendix F15

On the technique of constructing different combinations of potential den-
sity and steric anomaly surfaces

Figure 19 shows an excursion from a reference pressure, pr , and a reference tem-
perature, Θr , to any pressure and temperature on a surface. In these calculations we20

assume the variation of temperature with pressure on a surface from the reference val-
ues to be linear. While this linear p−Θ relation is a big assumption for the real ocean,
the method described here does yield a highly accurate approximate neutral surface
when this linear relation holds. The integral of the red area above the diagonal line in
Fig. 19 is proportional to25 ∫
∇nσΘdl≈∆σΘ, (F1)
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and the integral of the blue area in the same figure is proportional to∫
∇nδdl≈∆δ, (F2)

which can be seen from Eqs. (19) and (21). These values of ∆σΘ and ∆δ are
differences in potential density and modified steric anomaly. If the assumption of a
linear change of Θ with p is true then the sum of all the red and the blue areas should5

be equal and a surface defined as a linear combination of those particular potential
density and steric anomaly values should be close to neutral. If indeed the actual
data describes a straight line on the p−Θ-diagram, then a neutral trajectory will have
∆σΘ=∆δ. We use this motivation to write down a new definition of an approximately
neutral surface, namely,10

E = (ρ(S,Θ, pr )−ρ(Sr ,Θr , pr ))

− 106(δ(S,Θ, p)−δ(Sr ,Θr , pr ))=0 (F3)

The last term on the right hand side is zero and the third term can be written as

106δ(S,Θ, p) = 106(
1

ρ(S,Θ, p)
− 1
ρ(Sr ,Θr , p)

)

=
106

ρ(S,Θ, p)ρ(Sr ,Θr , pr )
(ρ(Sr ,Θr , p)−ρ(S,Θ, p))15

≈ (ρ(Sr ,Θr , p)−ρ(S,Θ, p)), (F4)

Therefore we end up defining the surface as

E = (ρ(S,Θ, pr )−ρ(Sr ,Θr , pr ))

− (ρ(Sr ,Θr , p)−ρ(S,Θ, p))=0. (F5)

Acknowledgements. We thank Russel Fiedler for providing the model data. Thanks also go20

to Jaclyn Brown, Bernadette Sloyan and Julien LeSommer for valuable comments on the
manuscript. This publication is a contribution to CSIRO‘s Wealth from Oceans Flagship.

450

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-print.pdf
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
5, 419–470, 2008

Optimized
approximately neutral

surfaces

A. Klocker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

References

de Szoeke, R. A., Springer, S. R., and Oxilia, D. M.: Orthobaric Density: A Thermodynamic
Variable for Ocean Circulation Studies, J. Phys. Oceanogr., 30, 2830–2852, 2000. 421, 434,
440

Eden, C. and Willebrand, J.: Neutral density revisited, Deep Sea Res. Pt. II, 46, 33–54, 1999.5

422, 423, 434
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World’s Oceans, J. Phys.

Oceanogr., 27, 237–263, 1997. 421, 422, 434, 437
Levitus, S.: Climatological Atlas of the World Ocean, NOAA Prof. Paper No. 13, Govt. Printing

office, 173 pp., 1982. 43510

Matlab: MATLAB – The Langugage of Technical Computing, the Math Works Inc., 2007. 429
McDougall, T. J.: Neutral surfaces, J. Phys. Oceanogr., 17, 1950–1964, 1987. 420, 421
McDougall, T. J.: Neutral-Surface Potential Vorticity, Prog. Oceanogr., 20, 185–221, 1988. 423
McDougall, T. J. and Jackett, D. R.: On the helical nature of neutral trajectories in the ocean,

Prog. Oceanogr., 20, 153–183, 1988. 421, 423, 426, 428, 429, 431, 444, 44715

McDougall, T. J. and Jackett, D. R.: An Assessment of Orthobaric Density in the Global Ocean,
J. Phys. Oceanogr., 35, 2054–2075, 2005a. 440

McDougall, T. J. and Jackett, D. R.: The material derivative of neutral density, J. Mar. Res., 63,
159–185, 2005b. 422, 424, 434, 436, 437

McDougall, T. J. and Jackett, D. R.: The Thinness of the ocean in S − Θ − p Space and the20

Implications for Mean Diapycnal Advection, J. Phys. Oceanogr., 37, 1714–1732, 2007. 425
Montgomery, R. B.: A suggested method for representing gradient flow in isentropic surfaces,

B. Amer. Meteorol. Soc., 18, 210–212, 1937. 439
Paige, C. C. and Saunders, M. A.: LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Softw., 8, 43–47, 1982. 42925

Polzin, K. L., Toole, J. M., Ledwell, R. W., and Schmitt, R. W.: Spatial Variability of Turbulent
Mixing in the Abyssal Ocean, Science, 276, 93–96, 1997. 424

Veronis, G.: The role of models in tracer studies, in: Numerical Models of Ocean Circultation,
National Academy of Science, 133–146, 1975. 443

451

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-print.pdf
http://www.ocean-sci-discuss.net/5/419/2008/osd-5-419-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
5, 419–470, 2008

Optimized
approximately neutral

surfaces

A. Klocker et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(ui + vj + wk)

(ui + vj)

ea

e

ehel w
ntp

ga

Fig. 1. This figure shows the differences between e, ehel, ea and w. The lateral velocity (ui+vj)
is directed horizontally. The three surfaces shown are the approximately neutral surface (γa),
the neutral tangent plane (ntp) and the top-most is the lateral velocity plus w, where w includes
all components leading to a flow which differs from a purely horizontal flow due to the tilt of an
approximately neutral surface, mixing effects and a diapycnal velocity caused by the ill-defined
nature of neutral surfaces, ehel.
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(ui + vj + wk)

(ui + vj)
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ehel
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ntp

ga

Fig. 61: This figure shows the differences betweene, ehel,
ea andw. The lateral velocity (ui + vj) is directed horizon-
tally. The three surfaces shown are the approximately neutral
surface (γa), the neutral tangent plane (ntp) and the top-most
is the lateral velocity plusw, wherew includes all compo-
nents leading to a flow which differs from a purely horizontal
flow (the tilt of an approximately neutral surface, mixing ef-
fects and a diapycnal velocity caused by the ill-defined nature
of neutral surfaces,ehel).
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(b) −∇a × ǫ · k

Fig. 62: A comparison of (a)gN−2H and (b)−∇a × ǫ · k
on a 27.25γn-surface in the North Atlantic.

y−slope

y−slope

x−slope x−slope

T,S

T,S

T,S

T,S

T,S

Fig. 63: Shown is the grid used by the algorithm explained
in this paper. The red points are the tracer grid points and the
slopes errors/pressure gradient errors are calculated on the
green points.

Fig. 2. A comparison of (a) gN−2H and (b)−∇a×ε · k on a 27.25 γn-surface in the North
Atlantic.
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y−slope

y−slope

x−slope x−slope

T,S

T,S

T,S

T,S

T,S

Fig. 3. Shown is the grid used by the algorithm explained in this paper. The red points are the
tracer grid points and the slopes errors/pressure gradient errors are calculated on the green
points.
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A. Klocker et al.: Optimized approximately neutral surfaces 15

(a) Pressure

(b) Conservative temperature

(c) gN−2H

Fig. 64: (a) Pressure, (b) conservative temperature and (c)
gN−2H on theω-surface.

(a) log10(D
f ) on theγn-surface

(b) log10(D
f ) on theω-surface

Fig. 65: log10(D
f ) on the (a)γn and the (b)ω-surfaces.

Fig. 4. (a) Pressure, (b) conservative temperature and (c) gN−2H on the ω-surface.
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(a) Pressure

(b) Conservative temperature

(c) gN−2H

Fig. 64: (a) Pressure, (b) conservative temperature and (c)
gN−2H on theω-surface.

(a) log10(D
f ) on theγn-surface

(b) log10(D
f ) on theω-surface

Fig. 65: log10(D
f ) on the (a)γn and the (b)ω-surfaces.Fig. 5. log10(Df ) on the (a) γn and the (b) ω-surfaces.
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Fig. 66: Frequency plot oflog10(D
f ) for the γn-surface

(red) and theω-surface (black) with an average pressure of
(a) 1000 db, (b)1400 db (the surface used throughout the text)
and (c) 1800 db. The black vertical line shows a ficititious
diapycnal diffusivity of10−5m2s−2; values right of this line
are larger than the mean value for the diapycnal diffusivity
measured in the ocean.

Fig. 67: gN−2H (colour) andǫ (arrows) on theω-surface.
Noteǫ going around patches of neutral helicity - clockwise
around positive patches and anticlockwise around negative
patches of neutral helicity.

Fig. 68: γn on theω-surface for model data from a MOM4
model run.

Fig. 6. Frequency plot of log10(Df ) for the γn-surface (red) and the ω-surface (black) with an
average pressure of (a) 1000 db, (b) 1400 db (the surface used throughout the text) and (c)
1800 db. The black vertical line shows a ficititious diapycnal diffusivity of 10−5 m2 s−2; values
right of this line are larger than the mean value for the diapycnal diffusivity measured in the
ocean.
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Fig. 66: Frequency plot oflog10(D
f ) for the γn-surface

(red) and theω-surface (black) with an average pressure of
(a) 1000 db, (b)1400 db (the surface used throughout the text)
and (c) 1800 db. The black vertical line shows a ficititious
diapycnal diffusivity of10−5m2s−2; values right of this line
are larger than the mean value for the diapycnal diffusivity
measured in the ocean.

Fig. 67: gN−2H (colour) andǫ (arrows) on theω-surface.
Noteǫ going around patches of neutral helicity - clockwise
around positive patches and anticlockwise around negative
patches of neutral helicity.

Fig. 68: γn on theω-surface for model data from a MOM4
model run.

Fig. 7. gN−2H (colour) and ε (arrows) on the ω-surface. Note ε going around patches of
neutral helicity – clockwise around positive patches and anticlockwise around negative patches
of neutral helicity.
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Fig. 8. γn on the ω-surface for model data from a MOM4 model run.
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Fig. 69:Tb∇ap ×∇aΘ · k ≈ gN−2H vs. −∇a × ǫ · k for
(a) aγn and (b) anω-surface. The rms error of the difference
between theory and the plotted data decreases by a factor of
6.

Fig. 9. Tb∇ap×∇aΘ · k≈gN−2H vs. −∇a×ε · k for (a) a γn and (b) an ω-surface. The rms error
of the difference between theory and the plotted data decreases by a factor of 6.
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(a) log10(Df ) for γi (b) log10(Df ) for γn

(c) log10(Df ) for γrf (d) log10(Df ) for γEW

(e) log10(Df ) for ω

Fig. 10. log10(Df ) for (a) γi , (b) γn, (c) γrf , (d) γEW and (e) ω. The surface chosen for these
plots has an average pressure of approx. 600 db. The same colour scale is used in each plot.
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(a) log10(Df ) for σ0 (b) log10(Df ) for σ600

(c) log10(Df ) for σ1000 (d) log10(Df ) for σ2000

Fig. 11. log10(Df ) for (a) σ0, (b) σ600, (c) σ1000 and (d) σ2000. The surface chosen for these plots
has an average pressure of approx. 600 db. The colours chosen for these plots are the same
as for those of Fig. 10.
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(a) log10(Df ) for δ (b) log10(Df ) for E

(c) log10(Df ) for ρν

Fig. 12. log10(Df ) for (a) δ, (b) E and (c) ρν. The colours chosen for these plots are the same
as for those of Fig. 10 and Fig. 11.
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Fig. 13. log10(Df ) of γn (green), σ0 (red) and ω (black). The black vertical line shows a ficititious
diapycnal diffusivity of 10−5 m2 s−2; values right of this line are larger than the mean value for the
diapycnal diffusivity measured in the ocean. These values for the fictitious diapycnal diffusivity
are for one surface in each case (with an average pressure of 600 db).
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Fig. 14. Shown are the 95th-percentiles of the diapycnal diffusivity in the North Atlantic for
all the density surfaces considered. One can see that for the North Atlantic the σ2000 and ρν-
surfaces have fictitious diapycnal diffusivities exceeding 10−5 m2 s−1 over more than 5% of their
area. These values for the fictitious diapycnal diffusivity are for one surface in each case (with
an average pressure of 600 db).
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Fig. 615: Shown is (a) the slope differences between a geopotential and an isopycnal surface and (b) the slope difference,s,
between an arbitrary surface and a neutral tangent plane (ntp).

(a) (b)

Fig. 616: (a) shows a circular pertubation ofΘ in the presence of a background pressure gradient (the pressure gradient is not
shown; it increases linearly along the y-axis). (b) shows the resulting dipole of neutral helicity.
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Fig. 617: (a) shows nine grid points of an initially helicity-free ocean in which we perturb a single point (see text for a
description), (b) shows the same points in ap − Θ-diagram.

Fig. 15. Shown is (a) the slope difference s between a geopotential and an isopycnal surface
and (b) the slope difference, s, between an arbitrary surface and a neutral tangent plane (ntp).
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Fig. 615: Shown is (a) the slope differences between a geopotential and an isopycnal surface and (b) the slope difference,s,
between an arbitrary surface and a neutral tangent plane (ntp).

(a) (b)

Fig. 616: (a) shows a circular pertubation ofΘ in the presence of a background pressure gradient (the pressure gradient is not
shown; it increases linearly along the y-axis). (b) shows the resulting dipole of neutral helicity.
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Fig. 617: (a) shows nine grid points of an initially helicity-free ocean in which we perturb a single point (see text for a
description), (b) shows the same points in ap − Θ-diagram.

Fig. 16. (a) shows a circular pertubation of Θ in the presence of a background pressure gradient
(the pressure gradient is not shown; it increases linearly along the y-axis). (b) shows the
resulting dipole of neutral helicity.
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Fig. 615: Shown is (a) the slope differences between a geopotential and an isopycnal surface and (b) the slope difference,s,
between an arbitrary surface and a neutral tangent plane (ntp).

(a) (b)

Fig. 616: (a) shows a circular pertubation ofΘ in the presence of a background pressure gradient (the pressure gradient is not
shown; it increases linearly along the y-axis). (b) shows the resulting dipole of neutral helicity.
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Fig. 617: (a) shows nine grid points of an initially helicity-free ocean in which we perturb a single point (see text for a
description), (b) shows the same points in ap − Θ-diagram.

Fig. 17. (a) shows nine grid points of an initially helicity-free ocean in which we perturb a single
point (see text for a description), (b) shows the same points in a p−Θ-diagram.
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22 A. Klocker et al.: Optimized approximately neutral surfaces

(a) (left) A block of density gradient errors with every error in the square block initially pointing
from the south to the north having strength 12 in dimensionless units (the block is marked by a
white surrounding), color is theΦ′-field, the arrows show the finalǫ vecors; (right)∇a × ǫnew

of the resultingǫ-field.

(b) (left) A block of density gradient errors with every error on the left side (the left block
surrounded by a white line) having arbitrary strength 12 in dimensionless units and every error
on the right side (the right block surrounded by a white line)-12, color is theΦ′-field, the arrows
show the finalǫ vecors; (right)∇a × ǫnew of the same field.

Fig. 618: Shown are the solutions for the simplified density gradient errors as described in the text.
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Fig. 619: Shown is an excursion on anE-surface from a ref-
erence pressurepr and a reference temperatureΘr to a point
with pressurep and temperatureΘ, assuming a linear change
of p andΘ.
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(a) (left) A block of density gradient errors with every error in the square block initially pointing
from the south to the north having strength 12 in dimensionless units (the block is marked by a
white surrounding), color is theΦ′-field, the arrows show the finalǫ vecors; (right)∇a × ǫnew

of the resultingǫ-field.

(b) (left) A block of density gradient errors with every error on the left side (the left block
surrounded by a white line) having arbitrary strength 12 in dimensionless units and every error
on the right side (the right block surrounded by a white line)-12, color is theΦ′-field, the arrows
show the finalǫ vecors; (right)∇a × ǫnew of the same field.

Fig. 618: Shown are the solutions for the simplified density gradient errors as described in the text.
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Fig. 619: Shown is an excursion on anE-surface from a ref-
erence pressurepr and a reference temperatureΘr to a point
with pressurep and temperatureΘ, assuming a linear change
of p andΘ.

Fig. 18. Shown are the solutions for the simplified density gradient errors as described in the
text.
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Fig. 19. Shown is an excursion on an E-surface from a reference pressure pr and a reference
temperature Θr to a point with pressure p and temperature Θ, assuming a linear change of p
and Θ.
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